Extremal and Probabilistic Graph Theory Lecture 10 March 31st, Thursday

Theorem 10.1 (Simonovits' Stability Theorem). $\forall \varepsilon > 0$, and \forall family \mathcal{F} with $\chi(\mathcal{F}) = r + 1$, $\exists \delta$ and n_0 s.t. if G is \mathcal{F} – free with $n \geq n_0$ vertices and $e(G) \geq (1 - \frac{1}{r})\binom{n}{2} - \delta n^2$, then $d(G, T_r(n)) \leq \varepsilon n^2$

We have proved just for $\mathcal{F} = \{K_{r+1}\}$; and the general case will be proved after Regularity Lemma.

Definition 10.2. A graph F is r-edge-critical if there exists an edge e such that $\chi(F-e) < \chi(F) = r$.

Definition 10.3. A r-partite graph G with $V(G) = V_1 \cup V_2 \cup ... \cup V_r$ is ε -almost complete if $\forall i < j, \ x \in V_i, \ |N(x) \cap V_i| \ge |V_i| - \varepsilon n$, where $|V_i| >> \varepsilon n$.

Lemma 10.4. Let $\varepsilon \in (0,1)$ small enough. Let F be (r+1)-edge-critical with b=|V(F)|. Let G be an F-f ree graph containing an ε -almost complete r-partite spanning subgraph G' with $V(G')=Z_1\cup\ldots\cup Z_r$ where $|Z_i|>>\varepsilon n$. Then

- (i). Each Z_i is independent.
- (ii). If we add an vertex w to G and get an F-free graph, then $\exists i$ s.t. w has at most ε brn neighbors in Z_i

Proof. Let b = |V(F)|. Note that there exists an edge $xy \in E(F)$ such that F - xy is r-partite. For (i), suppose that some Z_i (say Z_1) contains an edge uv. We then can find $B_i \subset Z_i$ with $|B_i| = b$ such that $\{uv\} \in B_1$ and B_1, B_2, \dots, B_r form a complete k-partite subgraph H (this is left as an exercise). Then it's clear that $F \subset H \subset G$.

We consider (ii). Suppose for a contradiction that w has at least εbrn neighbors in each Z_i . Claim: There are $B_i \subseteq Z_i$ with $|B_i| = b$ s.t. $B_1 \cup ... \cup B_r \cup \{w\}$ forms a complete (r+1)-partite $K_{b,b,...,b,1}$ in G.(Clearly $F \subseteq K_{b,b,...,b,1}$ so this is a contradiction)

First, choose $B_1 \subseteq Z_1 \cap N(w)$ with $|B_1| = b$ suppose we have $B_1 \subseteq Z_1, ..., B_i \subseteq Z_i$ s.t. $B_1 \cup ... \cup B_i \cup \{w\}$ forms (i+1)-partite $K_{b,b,...,b,1}$ $i \leq r-1$. Each $u \in B_1 \cup ... \cup B_i$ misses at most εn vertices in Z_{i+1} , thus there is a set S of Z_{i+1} with $|S| \geq |Z_{i+1}| - ib\varepsilon n$ such that each vertices in S is adjacent to each vertex of $B_1 \cup ... \cup B_i$. But w has $\geq rb\varepsilon n$ neighbors in Z_{i+1} . Therefore we can find $B_{i+1} \subseteq S \cap N(w)$ with $|B_{i+1}| = b$. This proves the claim. Then (ii) is complete.

An application of Stability approach

Theorem 10.5. Let F be an (r+1)-edge-critical where $r \geq 2$. Then for sufficiently large n (say $n \geq n_0(F)$), $ex(n, F) = e(T_r(n))$ and the unique extremal graph is $T_r(n)$

Proof. Let G be an F-free graph with $e(G) \ge e(T_r(n))$. Our goal is to show $G = T_r(n)$.

Claim: It sufficient to consider G with an additional condition that $\delta(G) \geq \delta(T_r(n))$

Proof of Claim. If $G_n = G$ has a vertex v_n of degree less than $\delta(T_r(n))$ then $G_{n-1} = G_n - \{v_n\}$ is s.t.

$$e(G_{n-1}) = e(G_n) - d(v_n) \ge e(T_r(n)) - \delta(T_r(n) + 1) = e(T_r(n-1)) + 1$$

Suppose we have defined G_m with $e(G_m) \ge e(T_r(m)) + (n-m)$. If G_m has a vertex v_m with $d_{G_m}(v_m) < \delta(T_r(n))$, then $G_{m-1} = G_m - \{v_m\}$ and similarly we can show

$$e(G_{m-1}) \ge e(Tr(m-1)) + n - m + 1$$

This process must terminate at some step, say G_t (having t vertices). Then

$$\binom{t}{2} \ge e(G_t) \ge e(T_r(t)) + n - t \ge n - t \Rightarrow t \ge \sqrt{n} \ large \ enough$$

Note that $\delta(G_t) \geq \delta(T_r(t))$. Now assume that under the additional condition $\delta(G_t) \geq \delta(T_r(t))$ one can prove $G_t = T_r(t)$

$$\Rightarrow e(T_r(t)) = e(G_t) \ge e(T_r(t)) + n - t \Rightarrow t = n$$

$$\Rightarrow G = G_n = G_t = T_r(n)$$

This proves the claim.

Take ε to be small enough $(\varepsilon := \varepsilon(F))$

By Stability Theorem, as $e(G) \ge e(T_r(n))$, then $d(G, T_r(n)) \le \varepsilon n^2$. So there exists an r-partition $V_1 \cup ... \cup V_r$ of G s.t.

$$\sum_{i=1}^{r} e(V_i) + \text{``missing edges''} \ge \varepsilon n^2 \tag{*}$$

where $|V_i| = \lceil \frac{n}{r} \rceil$ or $\lfloor \frac{n}{r} \rfloor$. Here, a missing edge is a pair (x, y) with $x \in V_i, y \in V_j$ s.t. $xy \notin E(G)$. We say a vertex u (say $u \in V_i$) is "bad" if $\exists V_j (j \neq i) |N(u) \cap V_j| < |V_j| - \sqrt{\varepsilon}n$ (i.e. u has $\geq \sqrt{\varepsilon}n$ missing edges).

Let $B = \{all \ bad \ vertices\}$. Then

$$|B| \le \frac{2\varepsilon n^2}{\sqrt{\varepsilon}n} = 2\sqrt{\varepsilon}n$$

Let $U_i = V_i \setminus B$ with

$$|U_i| \ge |V_i| - |B| \ge \frac{n}{r} - 2\sqrt{\varepsilon}n$$

And each $x \in U_i$ satisfies that

$$|N(x) \cap U_j| \ge |N(x) \cap V_j| - |B| \ge |V_j| - 3\sqrt{\varepsilon}n \ge |U_j| - 3\sqrt{(\varepsilon)}n$$

So $(U_1,...,U_r)$ is a $3\sqrt{\varepsilon}$ -almost complete r-partition. Let $\varepsilon' = 5\sqrt{\varepsilon}$.

By Lemma(i), each U_i is independent. Consider each $x \in B$. Since $G[(\cup U_i) \cup \{x\}]$ is F-free, by Lemma(ii), \exists some U_i with $|N(x) \cap U_i| \le \varepsilon' brn \le 5\sqrt{\varepsilon} brn$

By claim, $d_G(x) \geq \delta(T_r(n))$. So

$$|N(x) \cap (\cup_j U_j)| \ge d_G(x) - |B| \ge n - \lceil \frac{n}{r} \rceil - 2\sqrt{\varepsilon}n$$

$$\Rightarrow |N(x) \cap (\cup_j U_j \setminus U_i)| \ge n - \frac{n}{r} - 7\sqrt{\varepsilon}brn \ge |\cup_j U_j \setminus U_i| - 7\sqrt{\varepsilon}brn$$

In particular, for $\forall j \neq i$, $|N(x) \cap U_j| \geq |U_j| - 7\sqrt{\varepsilon}brn$. We then add this x into U_i to get a new r-partition $(U'_1, ..., U'_r)$ which is $7\sqrt{\varepsilon}br$ -almost complete.

By Lemma(i), U'_i is independent, i.e. $N(x) \cap U_i = \emptyset$.

Then repeating the above process \Rightarrow for $j \neq i, |N(x) \cap U_j| \geq |U_j| - 2\sqrt{\varepsilon}n$. So the new $(U'_1, ..., U'_j)$ is ε' -almost complete where $\varepsilon' = 5\sqrt{\varepsilon}$.

We can keep adding vertices in B into the r-partition $(U_1, ..., U_r)$ using the operator (*) which is always $5\sqrt{\varepsilon}$ -almost complete until B = . Then in the end. $V(G) = U_1 \cup ... \cup U_r$ and by lemma(i) each U_i is independent. So G is exactly r-partite. Since $e(G) \geq e(T_r(n))$ we see that $G = T_r(n)$ (Because $T_r(n)$ is the unique graph achieving the max number edges among all r-partite graphs).

Next, we introduce the concept of *Decomposition family*.

Definition. Given a graph F with $\chi(F) = r$, its decomposition family $\mathcal{M} = \mathcal{M}_F$ is the set of bipartite graphs obtained from any proper r-coloring of F by deleting any set of r-2 color classes of this coloring.

If F =edge-critical, then a member of \mathcal{M}_F consists of one edge.

Exercise. For any
$$F$$
 with $\chi(F) = r + 1$, $ex(n, F) \ge e(T_r(n)) + z(\frac{n}{2r}, \frac{n}{2r}, \mathcal{M}_F)$.

Erdos-Stone-Simonovits tells us that $ex(n, F) = e(T_r(n)) + o(n^2)$, for F with $\chi(F) = r + 1$. The remainder $o(n^2)$ depends primarily on \mathcal{M}_F . This roughly says that the general problem of ex(n, F) for $\chi(F) \geq 3$ can be reduced to degenerate case.

Exercise. Let
$$V(F) = \{a, b, c, d, e\}$$
, $E(F) = \{ab, ac, bc, de, cd, ce\}$, prove $ex(n, f) = \lfloor \frac{n^2}{4} \rfloor + 1$

For results and a detailed discussion on decomposition family, we refer interested readers to the survey of Simonovits, "How to solve a Turán type extremal graph problem (linear decomposition)" in 1999.